Cut out nsfwjs
This commit is contained in:
parent
74b3ea0a02
commit
f9af2efef1
|
@ -38,8 +38,7 @@
|
|||
"dependencies": {
|
||||
"@bull-board/api": "^4.12.2",
|
||||
"@bull-board/ui": "^4.12.2",
|
||||
"@napi-rs/cli": "^2.15.0",
|
||||
"@tensorflow/tfjs": "^3.21.0",
|
||||
"@napi-rs/cli": "^2.15.2",
|
||||
"js-yaml": "4.1.0",
|
||||
"seedrandom": "^3.0.5"
|
||||
},
|
||||
|
|
|
@ -90,7 +90,6 @@
|
|||
"nested-property": "4.0.0",
|
||||
"node-fetch": "3.3.0",
|
||||
"nodemailer": "6.8.0",
|
||||
"nsfwjs": "2.4.2",
|
||||
"oauth": "^0.10.0",
|
||||
"os-utils": "0.0.14",
|
||||
"parse5": "7.1.2",
|
||||
|
|
|
@ -11,7 +11,6 @@ import probeImageSize from "probe-image-size";
|
|||
import { type predictionType } from "nsfwjs";
|
||||
import sharp from "sharp";
|
||||
import { encode } from "blurhash";
|
||||
import { detectSensitive } from "@/services/detect-sensitive.js";
|
||||
import { createTempDir } from "./create-temp.js";
|
||||
|
||||
const pipeline = util.promisify(stream.pipeline);
|
||||
|
@ -126,23 +125,6 @@ export async function getFileInfo(
|
|||
let sensitive = false;
|
||||
let porn = false;
|
||||
|
||||
if (!opts.skipSensitiveDetection) {
|
||||
await detectSensitivity(
|
||||
path,
|
||||
type.mime,
|
||||
opts.sensitiveThreshold ?? 0.5,
|
||||
opts.sensitiveThresholdForPorn ?? 0.75,
|
||||
opts.enableSensitiveMediaDetectionForVideos ?? false,
|
||||
).then(
|
||||
(value) => {
|
||||
[sensitive, porn] = value;
|
||||
},
|
||||
(error) => {
|
||||
warnings.push(`detectSensitivity failed: ${error}`);
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
return {
|
||||
size,
|
||||
md5,
|
||||
|
@ -157,177 +139,6 @@ export async function getFileInfo(
|
|||
};
|
||||
}
|
||||
|
||||
async function detectSensitivity(
|
||||
source: string,
|
||||
mime: string,
|
||||
sensitiveThreshold: number,
|
||||
sensitiveThresholdForPorn: number,
|
||||
analyzeVideo: boolean,
|
||||
): Promise<[sensitive: boolean, porn: boolean]> {
|
||||
let sensitive = false;
|
||||
let porn = false;
|
||||
|
||||
function judgePrediction(
|
||||
result: readonly predictionType[],
|
||||
): [sensitive: boolean, porn: boolean] {
|
||||
let sensitive = false;
|
||||
let porn = false;
|
||||
|
||||
if (
|
||||
(result.find((x) => x.className === "Sexy")?.probability ?? 0) >
|
||||
sensitiveThreshold
|
||||
)
|
||||
sensitive = true;
|
||||
if (
|
||||
(result.find((x) => x.className === "Hentai")?.probability ?? 0) >
|
||||
sensitiveThreshold
|
||||
)
|
||||
sensitive = true;
|
||||
if (
|
||||
(result.find((x) => x.className === "Porn")?.probability ?? 0) >
|
||||
sensitiveThreshold
|
||||
)
|
||||
sensitive = true;
|
||||
|
||||
if (
|
||||
(result.find((x) => x.className === "Porn")?.probability ?? 0) >
|
||||
sensitiveThresholdForPorn
|
||||
)
|
||||
porn = true;
|
||||
|
||||
return [sensitive, porn];
|
||||
}
|
||||
|
||||
if (["image/jpeg", "image/png", "image/webp"].includes(mime)) {
|
||||
const result = await detectSensitive(source);
|
||||
if (result) {
|
||||
[sensitive, porn] = judgePrediction(result);
|
||||
}
|
||||
} else if (
|
||||
analyzeVideo &&
|
||||
(mime === "image/apng" || mime.startsWith("video/"))
|
||||
) {
|
||||
const [outDir, disposeOutDir] = await createTempDir();
|
||||
try {
|
||||
const command = FFmpeg()
|
||||
.input(source)
|
||||
.inputOptions([
|
||||
"-skip_frame",
|
||||
"nokey", // 可能ならキーフレームのみを取得してほしいとする(そうなるとは限らない)
|
||||
"-lowres",
|
||||
"3", // 元の画質でデコードする必要はないので 1/8 画質でデコードしてもよいとする(そうなるとは限らない)
|
||||
])
|
||||
.noAudio()
|
||||
.videoFilters([
|
||||
{
|
||||
filter: "select", // フレームのフィルタリング
|
||||
options: {
|
||||
e: "eq(pict_type,PICT_TYPE_I)", // I-Frame のみをフィルタする(VP9 とかはデコードしてみないとわからないっぽい)
|
||||
},
|
||||
},
|
||||
{
|
||||
filter: "blackframe", // 暗いフレームの検出
|
||||
options: {
|
||||
amount: "0", // 暗さに関わらず全てのフレームで測定値を取る
|
||||
},
|
||||
},
|
||||
{
|
||||
filter: "metadata",
|
||||
options: {
|
||||
mode: "select", // フレーム選択モード
|
||||
key: "lavfi.blackframe.pblack", // フレームにおける暗部の百分率(前のフィルタからのメタデータを参照する)
|
||||
value: "50",
|
||||
function: "less", // 50% 未満のフレームを選択する(50% 以上暗部があるフレームだと誤検知を招くかもしれないので)
|
||||
},
|
||||
},
|
||||
{
|
||||
filter: "scale",
|
||||
options: {
|
||||
w: 299,
|
||||
h: 299,
|
||||
},
|
||||
},
|
||||
])
|
||||
.format("image2")
|
||||
.output(join(outDir, "%d.png"))
|
||||
.outputOptions(["-vsync", "0"]); // 可変フレームレートにすることで穴埋めをさせない
|
||||
const results: ReturnType<typeof judgePrediction>[] = [];
|
||||
let frameIndex = 0;
|
||||
let targetIndex = 0;
|
||||
let nextIndex = 1;
|
||||
for await (const path of asyncIterateFrames(outDir, command)) {
|
||||
try {
|
||||
const index = frameIndex++;
|
||||
if (index !== targetIndex) {
|
||||
continue;
|
||||
}
|
||||
targetIndex = nextIndex;
|
||||
nextIndex += index; // fibonacci sequence によってフレーム数制限を掛ける
|
||||
const result = await detectSensitive(path);
|
||||
if (result) {
|
||||
results.push(judgePrediction(result));
|
||||
}
|
||||
} finally {
|
||||
fs.promises.unlink(path);
|
||||
}
|
||||
}
|
||||
sensitive =
|
||||
results.filter((x) => x[0]).length >=
|
||||
Math.ceil(results.length * sensitiveThreshold);
|
||||
porn =
|
||||
results.filter((x) => x[1]).length >=
|
||||
Math.ceil(results.length * sensitiveThresholdForPorn);
|
||||
} finally {
|
||||
disposeOutDir();
|
||||
}
|
||||
}
|
||||
|
||||
return [sensitive, porn];
|
||||
}
|
||||
|
||||
async function* asyncIterateFrames(
|
||||
cwd: string,
|
||||
command: FFmpeg.FfmpegCommand,
|
||||
): AsyncGenerator<string, void> {
|
||||
const watcher = new FSWatcher({
|
||||
cwd,
|
||||
disableGlobbing: true,
|
||||
});
|
||||
let finished = false;
|
||||
command.once("end", () => {
|
||||
finished = true;
|
||||
watcher.close();
|
||||
});
|
||||
command.run();
|
||||
for (let i = 1; true; i++) {
|
||||
const current = `${i}.png`;
|
||||
const next = `${i + 1}.png`;
|
||||
const framePath = join(cwd, current);
|
||||
if (await exists(join(cwd, next))) {
|
||||
yield framePath;
|
||||
} else if (!finished) {
|
||||
watcher.add(next);
|
||||
await new Promise<void>((resolve, reject) => {
|
||||
watcher.on("add", function onAdd(path) {
|
||||
if (path === next) {
|
||||
// 次フレームの書き出しが始まっているなら、現在フレームの書き出しは終わっている
|
||||
watcher.unwatch(current);
|
||||
watcher.off("add", onAdd);
|
||||
resolve();
|
||||
}
|
||||
});
|
||||
command.once("end", resolve); // 全てのフレームを処理し終わったなら、最終フレームである現在フレームの書き出しは終わっている
|
||||
command.once("error", reject);
|
||||
});
|
||||
yield framePath;
|
||||
} else if (await exists(framePath)) {
|
||||
yield framePath;
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function exists(path: string): Promise<boolean> {
|
||||
return fs.promises.access(path).then(
|
||||
() => true,
|
||||
|
|
|
@ -1,55 +0,0 @@
|
|||
import * as fs from "node:fs";
|
||||
import { fileURLToPath } from "node:url";
|
||||
import { dirname } from "node:path";
|
||||
import * as nsfw from "nsfwjs";
|
||||
import si from "systeminformation";
|
||||
|
||||
const _filename = fileURLToPath(import.meta.url);
|
||||
const _dirname = dirname(_filename);
|
||||
|
||||
const REQUIRED_CPU_FLAGS = ["avx2", "fma"];
|
||||
let isSupportedCpu: undefined | boolean = undefined;
|
||||
|
||||
let model: nsfw.NSFWJS;
|
||||
|
||||
export async function detectSensitive(
|
||||
path: string,
|
||||
): Promise<nsfw.predictionType[] | null> {
|
||||
try {
|
||||
if (isSupportedCpu === undefined) {
|
||||
const cpuFlags = await getCpuFlags();
|
||||
isSupportedCpu = REQUIRED_CPU_FLAGS.every((required) =>
|
||||
cpuFlags.includes(required),
|
||||
);
|
||||
}
|
||||
|
||||
if (!isSupportedCpu) {
|
||||
console.error("This CPU cannot use TensorFlow.");
|
||||
return null;
|
||||
}
|
||||
|
||||
const tf = await import("@tensorflow/tfjs-node");
|
||||
|
||||
if (model == null)
|
||||
model = await nsfw.load(`file://${_dirname}/../../nsfw-model/`, {
|
||||
size: 299,
|
||||
});
|
||||
|
||||
const buffer = await fs.promises.readFile(path);
|
||||
const image = (await tf.node.decodeImage(buffer, 3)) as any;
|
||||
try {
|
||||
const predictions = await model.classify(image);
|
||||
return predictions;
|
||||
} finally {
|
||||
image.dispose();
|
||||
}
|
||||
} catch (err) {
|
||||
console.error(err);
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
async function getCpuFlags(): Promise<string[]> {
|
||||
const str = await si.cpuFlags();
|
||||
return str.split(/\s+/);
|
||||
}
|
8661
pnpm-lock.yaml
8661
pnpm-lock.yaml
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue